Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38573825

Ferriphaselus amnicola GF-20 is the first Fe-oxidizing bacterium isolated from the continental subsurface. It was isolated from groundwater circulating at 20 m depth in the fractured-rock catchment observatory of Guidel-Ploemeur (France). Strain GF-20 is a neutrophilic, iron- and thiosulfate-oxidizer and grows autotrophically. The strain shows a preference for low oxygen concentrations, which suggests an adaptation to the limiting oxygen conditions of the subsurface. It produces extracellular stalks and dreads when grown with Fe(II) but does not secrete any structure when grown with thiosulfate. Phylogenetic analyses and genome comparisons revealed that strain GF-20 is affiliated with the species F. amnicola and is strikingly similar to F. amnicola strain OYT1, which was isolated from a groundwater seep in Japan. Based on the phenotypic and phylogenetic characteristics, we propose that GF-20 represents a new strain within the species F. amnicola.


Groundwater , Iron , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S , Thiosulfates , Groundwater/microbiology , Thiosulfates/metabolism , Iron/metabolism , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , France , Genome, Bacterial , Sequence Analysis, DNA , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Bacteroidetes/classification , Bacteroidetes/metabolism
2.
Front Microbiol ; 13: 869479, 2022.
Article En | MEDLINE | ID: mdl-35865931

One of the most distinctive characteristics of archaea is their unique lipids. While the general nature of archaeal lipids has been linked to their tolerance to extreme conditions, little is known about the diversity of lipidic structures archaea are able to synthesize, which hinders the elucidation of the physicochemical properties of their cell membrane. In an effort to widen the known lipid repertoire of the piezophilic and hyperthermophilic model archaeon Thermococcus barophilus, we comprehensively characterized its intact polar lipid (IPL), core lipid (CL), and polar head group compositions using a combination of cutting-edge liquid chromatography and mass spectrometric ionization systems. We tentatively identified 82 different IPLs based on five distinct CLs and 10 polar head group derivatives of phosphatidylhexoses, including compounds reported here for the first time, e.g., di-N-acetylhexosamine phosphatidylhexose-bearing lipids. Despite having extended the knowledge on the lipidome, our results also indicate that the majority of T. barophilus lipids remain inaccessible to current analytical procedures and that improvements in lipid extraction and analysis are still required. This expanded yet incomplete lipidome nonetheless opens new avenues for understanding the physiology, physicochemical properties, and organization of the membrane in this archaeon as well as other archaea.

3.
Appl Environ Microbiol ; 88(4): e0215421, 2022 02 22.
Article En | MEDLINE | ID: mdl-34936840

Butanetriol and pentanetriol dibiphytanyl glycerol tetraethers (BDGTs and PDGTs, respectively) are recently identified classes of archaeal membrane lipids that are prominent constituents in anoxic subseafloor sediments. These lipids are intriguing, as they possess unusual backbones with four or five carbon atoms instead of the canonical three-carbon glycerol backbone. In this study, we examined the biosynthesis of BDGTs and PDGTs by the methanogen Methanomassiliicoccus luminyensis, the only available isolate known to produce these compounds, via stable isotope labeling with [methyl-13C]methionine followed by mass spectrometry analysis. We show that their biosynthesis proceeds from transfer(s) of the terminal methyl group of methionine to the more common archaeal membrane lipids, i.e., glycerol dibiphytanyl glycerol tetraethers (GDGTs). As this methylation targets a methylene group, a radical mechanism involving a radical S-adenosylmethionine (SAM) enzyme is probable. Over the course of the incubation, the abundance of PDGTs relative to BDGTs, expressed as backbone methylation index, increased, implying that backbone methylation may be related to the growth shift to stationary conditions, possibly due to limited energy and/or substrate availability. The increase of the backbone methylation index with increasing sediment age in a sample set from the Mediterranean Sea adds support for such a relationship. IMPORTANCE Butanetriol and pentanetriol dibiphytanyl glycerol tetraethers are membrane lipids recently discovered in anoxic environments. These lipids differ from typical membrane-spanning tetraether lipids because they possess a non-glycerol backbone. The biosynthetic pathway and physiological role of these unique lipids are currently unknown. Here, we show that in the strain Methanomassiliicoccus luminyensis, these lipids are the result of methyl transfer(s) from an S-adenosyl methionine (SAM) intermediate. We observed a relative increase of the doubly methylated compound, pentanetriol dibiphytanyl glycerol tetraether, in the stationary phase of M. luminyensis as well as in the subseafloor of the Mediterranean Sea and thus introduced a backbone methylation index, which could be used to further explore microbial activity in natural settings.


Archaea , Euryarchaeota , Archaea/metabolism , Glycerol/metabolism , Membrane Lipids/metabolism , Methylation
4.
Front Microbiol ; 11: 1034, 2020.
Article En | MEDLINE | ID: mdl-32582055

Planktonic archaea include predominantly Marine Group I Thaumarchaeota (MG I) and Marine Group II Euryarchaeota (MG II), which play important roles in the oceanic carbon cycle. MG I produce specific lipids called isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs), which are being used in the sea surface temperature proxy named TEX86. Although MG II may be the most abundant planktonic archaeal group in surface water, their lipid composition remains poorly characterized because of the lack of cultured representatives. Circumstantial evidence from previous studies of marine suspended particulate matter suggests that MG II may produce both GDGTs and archaeol-based lipids. In this study, integration of the 16S rRNA gene quantification and sequencing and lipid analysis demonstrated that MG II contributed significantly to the pool of archaeal tetraether lipids in samples collected from MG II-dominated surface waters of the Northwestern Pacific Ocean (NWPO). The archaeal lipid composition in MG II-dominated NWPO waters differed significantly from that of known MG I cultures, containing relatively more 2G-OH-, 2G- and 1G- GDGTs, especially in their acyclic form. Lipid composition in NWPO waters was also markedly different from MG I-dominated surface water samples collected in the East China Sea. GDGTs from MG II-dominated samples seemed to respond to temperature similarly to GDGTs from the MG I-dominated samples, which calls for further study using pure cultures to determine the exact impact of MG II on GDGT-based proxies.

5.
Proc Natl Acad Sci U S A ; 117(12): 6599-6607, 2020 03 24.
Article En | MEDLINE | ID: mdl-32170018

Marine microalgae sequester as much CO2 into carbohydrates as terrestrial plants. Polymeric carbohydrates (i.e., glycans) provide carbon for heterotrophic organisms and constitute a carbon sink in the global oceans. The quantitative contributions of different algal glycans to cycling and sequestration of carbon remain unknown, partly because of the analytical challenge to quantify glycans in complex biological matrices. Here, we quantified a glycan structural type using a recently developed biocatalytic strategy, which involves laminarinase enzymes that specifically cleave the algal glycan laminarin into readily analyzable fragments. We measured laminarin along transects in the Arctic, Atlantic, and Pacific oceans and during three time series in the North Sea. These data revealed a median of 26 ± 17% laminarin within the particulate organic carbon pool. The observed correlation between chlorophyll and laminarin suggests an annual production of algal laminarin of 12 ± 8 gigatons: that is, approximately three times the annual atmospheric carbon dioxide increase by fossil fuel burning. Moreover, our data revealed that laminarin accounted for up to 50% of organic carbon in sinking diatom-containing particles, thus substantially contributing to carbon export from surface waters. Spatially and temporally variable laminarin concentrations in the sunlit ocean are driven by light availability. Collectively, these observations highlight the prominent ecological role and biogeochemical function of laminarin in oceanic carbon export and energy flow to higher trophic levels.


Carbon Cycle , Carbon/metabolism , Diatoms/growth & development , Diatoms/metabolism , Glucans/metabolism , Carbon Dioxide/analysis , Chlorophyll/analysis , Diatoms/chemistry , Glucans/analysis , Oceans and Seas , Seawater
6.
Front Microbiol ; 10: 3041, 2019.
Article En | MEDLINE | ID: mdl-32010098

The flux of methane, a potent greenhouse gas, from the seabed is largely controlled by anaerobic oxidation of methane (AOM) coupled to sulfate reduction (S-AOM) in the sulfate methane transition (SMT). S-AOM is estimated to oxidize 90% of the methane produced in marine sediments and is mediated by a consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria. An additional methane sink, i.e., iron oxide coupled AOM (Fe-AOM), has been suggested to be active in the methanic zone of marine sediments. Geochemical signatures below the SMT such as high dissolved iron, low to undetectable sulfate and high methane concentrations, together with the presence of iron oxides are taken as prerequisites for this process. So far, Fe-AOM has neither been proven in marine sediments nor have the governing key microorganisms been identified. Here, using a multidisciplinary approach, we show that Fe-AOM occurs in iron oxide-rich methanic sediments of the Helgoland Mud Area (North Sea). When sulfate reduction was inhibited, different iron oxides facilitated AOM in long-term sediment slurry incubations but manganese oxide did not. Especially magnetite triggered substantial Fe-AOM activity and caused an enrichment of ANME-2a archaea. Methane oxidation rates of 0.095 ± 0.03 nmol cm-3 d-1 attributable to Fe-AOM were obtained in short-term radiotracer experiments. The decoupling of AOM from sulfate reduction in the methanic zone further corroborated that AOM was iron oxide-driven below the SMT. Thus, our findings prove that Fe-AOM occurs in methanic marine sediments containing mineral-bound ferric iron and is a previously overlooked but likely important component in the global methane budget. This process has the potential to sustain microbial life in the deep biosphere.

7.
J Mass Spectrom ; 47(12): 1582-93, 2012 Dec.
Article En | MEDLINE | ID: mdl-23280747

Aqueous solutions of metolachlor and metolachlor-d(6) were photolyzed with UV-visible radiations. The structures of 15 by-products of metolachlor were determined through gas chromatography-mass spectrometry analyses using electron and chemical ionization combined with multistage mass spectrometry. The photolysis by-products of metolachlor resulted mainly from dehalogenation and hydroxylation, in some cases accompanied by cyclization. In silico tests for toxicity prediction showed that the toxicity of some photolysis products is expected to be greater than that of metolachlor. Persistence studies showed that the by-product relative abundances vary in large amounts with the irradiation time. The post-photolysis evolution of the solution was also studied, in order to determine the persistence of the main by-products. It allowed to establish that most of the by-products can be found more than 12 h after the end of the photolysis, which is of a great concern as treated water is generally available for consumption only a few hours after treatment in most of industrial processes.

8.
Anal Chem ; 83(20): 7587-90, 2011 Oct 15.
Article En | MEDLINE | ID: mdl-21923170

This article describes the strange behavior of the widely used herbicide metolachlor under chemical ionization conditions in a hybrid source ion trap mass spectrometer in gas chromatography/mass spectrometry (GC/MS) coupling. With the use of ammonia as the reagent gas, metolachlor provides a chlorinated ion at m/z 295/297, almost as abundant as the protonated molecule at m/z 284/286, which cannot be isolated to perform tandem mass spectrometry (MS(n)) experiments. Curiously, this ion at m/z = M + 12 is not observed for the herbicides acetochlor and alachlor, which present very similar chemical structures. The chemical structure of the m/z 295/297 ions and the explanation of the observed phenomenon based on the metastable behavior of these ions were elucidated on the basis of experiments including isotopic labeling and modifications of the operating conditions of the ion trap mass spectrometer. This work allows one to give new recommendations for an optimized use of hybrid source ion trap mass spectrometers.


Acetamides/chemistry , Gas Chromatography-Mass Spectrometry , Herbicides/chemistry , Ammonia/chemistry , Ions/chemistry
...